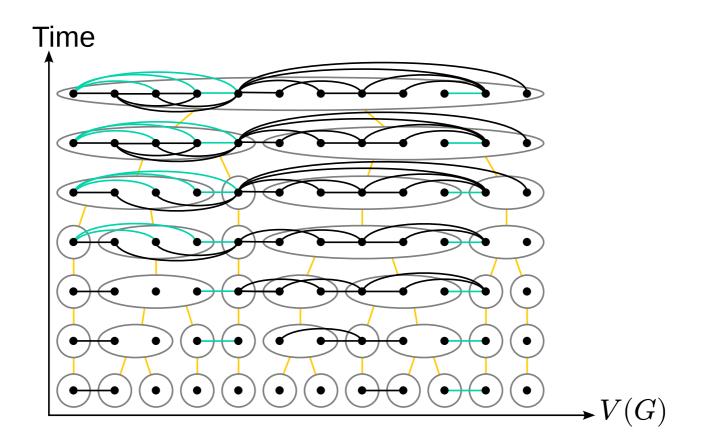
Merge-width and χ -boundedness

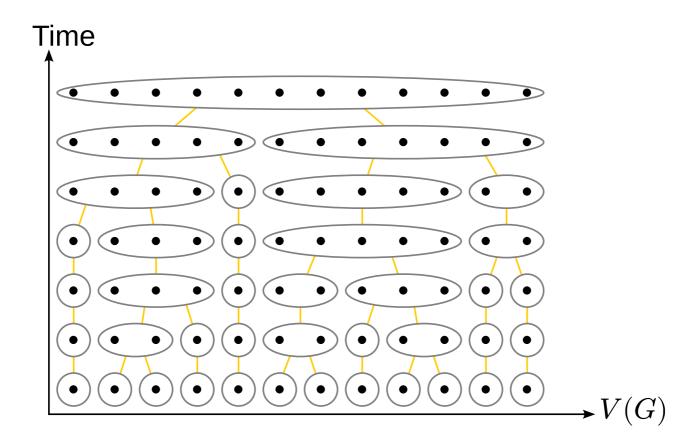
Some elementary proofs with merge-width

Marthe Bonamy

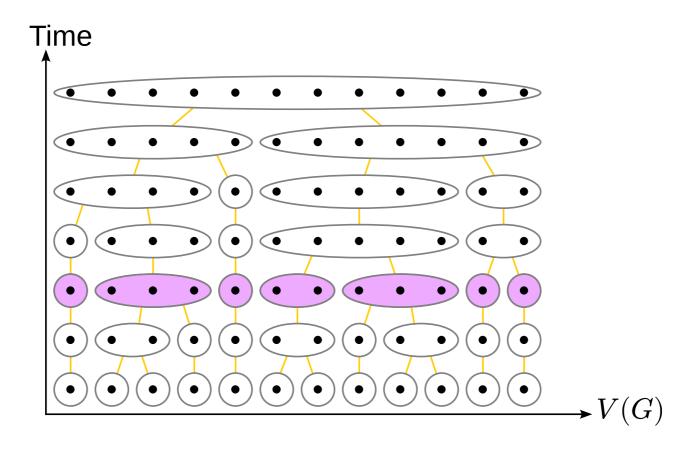
Colin Geniet

LoGAlg 2025

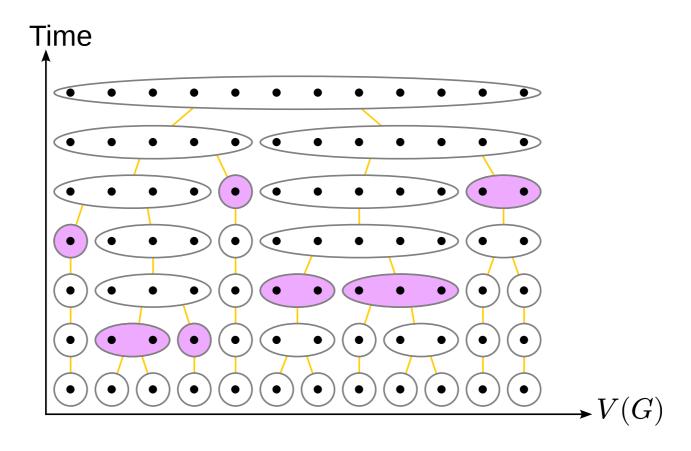




• For algorithms: dynamic programming over the whole sequence.



- For algorithms: dynamic programming over the whole sequence.
- For direct proofs: pick a single interesting step in the sequence,



- For algorithms: dynamic programming over the whole sequence.
- For direct proofs: pick a single interesting step in the sequence,
- or pick a partition *across* $\mathcal{P}_1,...,\mathcal{P}_m$ ("freezing").

Theorem

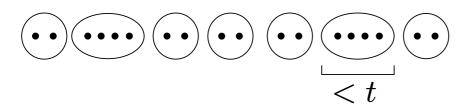
Let G be a $K_{t,t}$ -free graph with $\mathrm{mw}_1(G) \leq k$. Then G is $O(t^2k)$ -degenerate.

Theorem

Let G be a $K_{t,t}$ -free graph with $\mathrm{mw}_1(G) \leq k$. Then G is $O(t^2k)$ -degenerate.

Take the first \mathcal{P}_i with $A \in \mathcal{P}_i$ of size $\geq t$. So |A| < 2t, and other parts have size < t.

$$A \underbrace{\geq t}$$

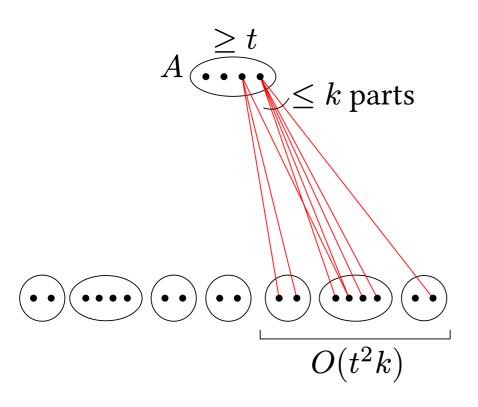


(red edge = resolved edge/non-edge)

Theorem

Let G be a $K_{t,t}$ -free graph with $\mathrm{mw}_1(G) \leq k$. Then G is $O(t^2k)$ -degenerate.

Take the first \mathcal{P}_i with $A \in \mathcal{P}_i$ of size $\geq t$. So |A| < 2t, and other parts have size < t.



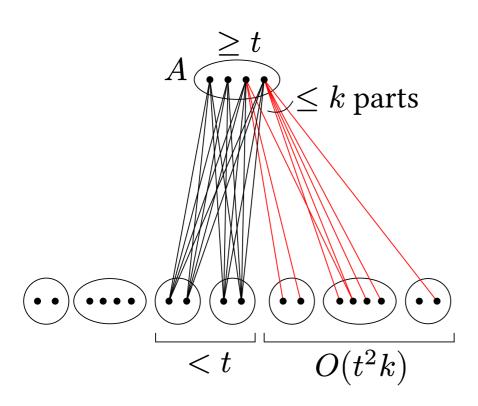
There are $\leq 2t^2k$ resolved pairs out of A. Call B the vertices not joined to A by any resolved pair.

(red edge = resolved edge/non-edge)

Theorem

Let G be a $K_{t,t}$ -free graph with $\mathrm{mw}_1(G) \leq k$. Then G is $O(t^2k)$ -degenerate.

Take the first \mathcal{P}_i with $A \in \mathcal{P}_i$ of size $\geq t$. So |A| < 2t, and other parts have size < t.



There are $\leq 2t^2k$ resolved pairs out of A. Call B the vertices not joined to A by any resolved pair.

Any $b \in B$ is either fully connected or non-adjacent to A. Less than t of them are fully connected to A.

χ -boundedness

 $\chi(G)$: minimum number of colours to properly colour G

 $\omega(G)$: maximum clique size in G

Goal: bounded merge-width implies χ -bounded.

Theorem

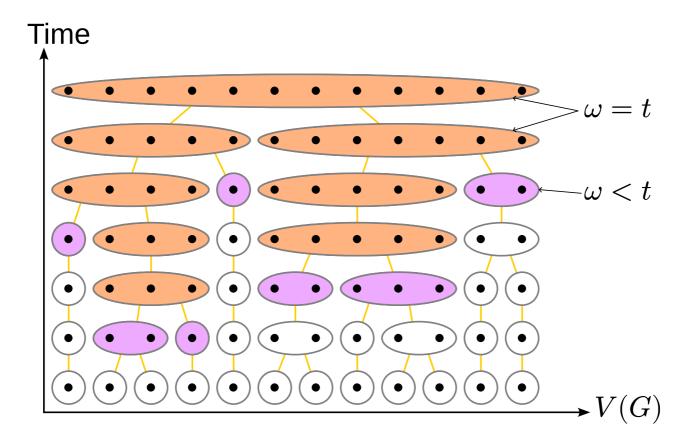
There is a function f such that any graph G satisfies

$$\chi(G) \leq f(\omega(G), \mathrm{mw}_2(G)).$$

We fix $k := mw_2(G)$, $t := \omega(G)$.

Decreasing ω

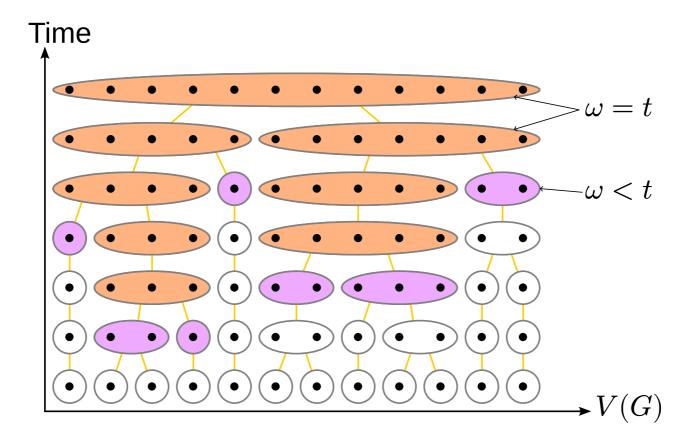
 $(t := \omega(G))$



Across all partitions $\mathcal{P}_1,...,\mathcal{P}_m$, take the maximal parts P such that $\omega(G[P]) < t$. This is a partition \mathcal{P} .

Decreasing ω

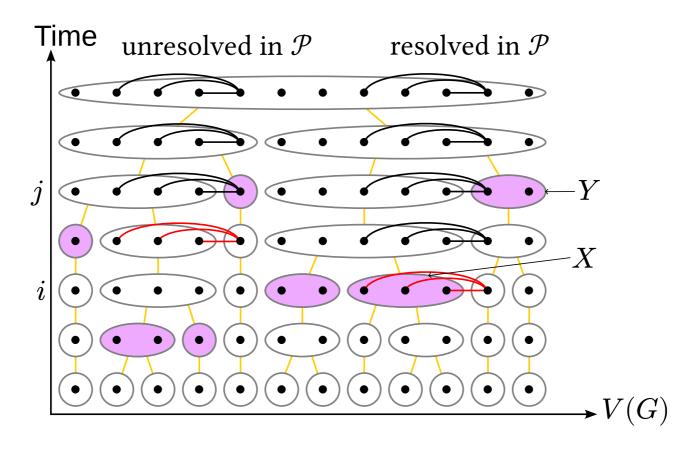
 $(t := \omega(G))$



Across all partitions $\mathcal{P}_1,...,\mathcal{P}_m$, take the maximal parts P such that $\omega(G[P]) < t$. This is a partition \mathcal{P} .

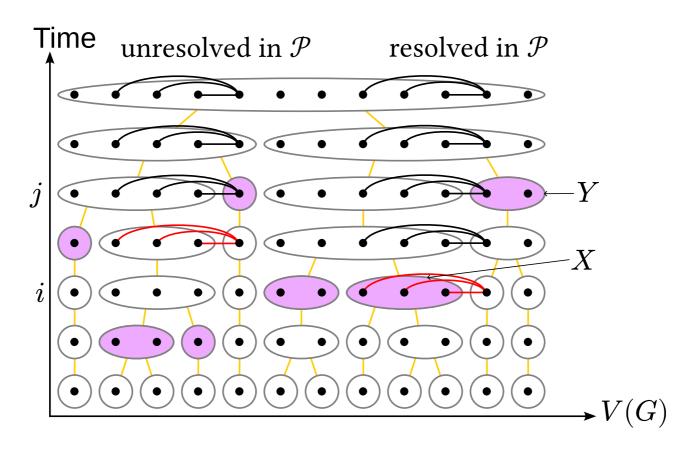
By induction on ω , we can colour each $P \in \mathcal{P}$, so we focus on edges between distinct parts.

New and Old edges



Take an edge xy between parts $X \neq Y$ in \mathcal{P} . Say X, Y come from $\mathcal{P}_i, \mathcal{P}_j$. We say xy is *resolved in* \mathcal{P} if xy was resolved at time $\min(i, j)$, or earlier.

New and Old edges



Take an edge xy between parts $X \neq Y$ in \mathcal{P} . Say X,Y come from $\mathcal{P}_i,\mathcal{P}_j$. We say xy is resolved in \mathcal{P} if xy was resolved at time $\min(i,j)$, or earlier. Let E_R, E_U be the resolved/unresolved edges in \mathcal{P} . We colour (V, E_R) and (V, E_U) independently.

Product colouring

Summary:

We have three kinds of edges associated with \mathcal{P} :

- edges inside a part $P \in \mathcal{P}$
- E_R : edges created by resolving between parts in or before \mathcal{P} ("resolved in \mathcal{P} ")
- E_U : edges created by resolving with a part after \mathcal{P} ("unresolved in \mathcal{P} ")

Product colouring

Summary:

We have three kinds of edges associated with \mathcal{P} :

- edges inside a part $P \in \mathcal{P}$
- E_R : edges created by resolving between parts in or before \mathcal{P} ("resolved in \mathcal{P} ")
- E_U : edges created by resolving with a part after \mathcal{P} ("unresolved in \mathcal{P} ")

We colour each of the 3 edge set separately, and combine with a product colouring.

For edges inside a part of \mathcal{P} : use induction on ω .

Now we deal with E_U , and then E_R .

 $k := \mathrm{mw}_2(G), t := \omega(G)$

Order parts of \mathcal{P} by the time they are merged with something else.

Claim

Each $P \in \mathcal{P}$ has *unresolved* edges to most kt *later* parts in \mathcal{P} .

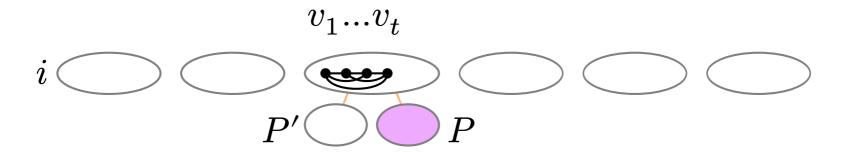
In other words, $(V, E_U)/\mathcal{P}$ is kt-degenerate, and (V, E_U) is (kt + 1)-colourable.

 $k := \operatorname{mw}_2(G), t := \omega(G)$

Order parts of \mathcal{P} by the time they are merged with something else.

Claim

Each $P \in \mathcal{P}$ has *unresolved* edges to most kt *later* parts in \mathcal{P} .



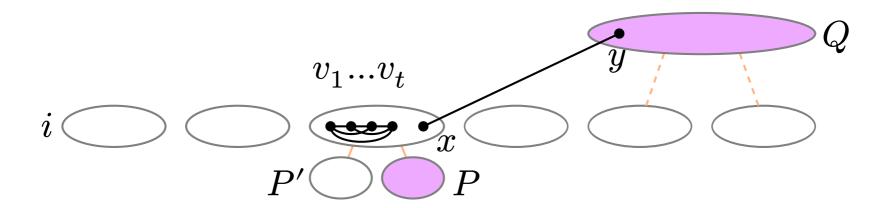
Say P is merged with P' at time i. Then $G(P \cup P')$ contains a clique $\{v_1,...,v_t\}$.

 $k := \operatorname{mw}_2(G), t := \omega(G)$

Order parts of \mathcal{P} by the time they are merged with something else.

Claim

Each $P \in \mathcal{P}$ has *unresolved* edges to most kt *later* parts in \mathcal{P} .



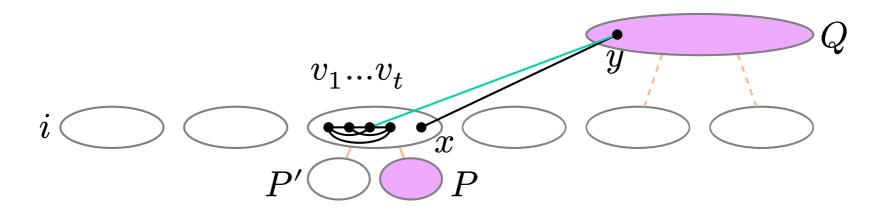
Say P is merged with P' at time i. Then $G(P \cup P')$ contains a clique $\{v_1,...,v_t\}$. Say $Q \in \mathcal{P}$ disappears after time i, and $xy \in E_U$ is an edge between P and Q.

 $k := \operatorname{mw}_2(G), t := \omega(G)$

Order parts of \mathcal{P} by the time they are merged with something else.

Claim

Each $P \in \mathcal{P}$ has *unresolved* edges to most kt *later* parts in \mathcal{P} .



Say P is merged with P' at time i. Then $G(P \cup P')$ contains a clique $\{v_1,...,v_t\}$. Say $Q \in \mathcal{P}$ disappears after time i, and $xy \in E_U$ is an edge between P and Q.

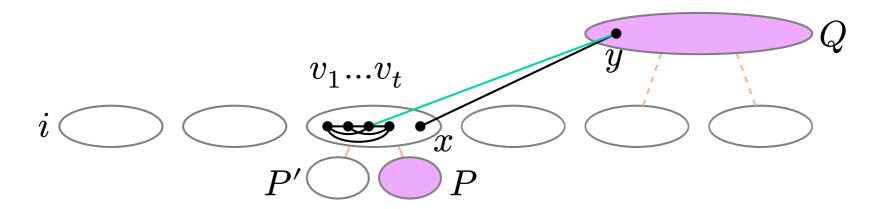
Then $v_i y$ must be a non-edge for some i (otherwise $\omega(G) > t$)

$$k := \operatorname{mw}_2(G), t := \omega(G)$$

Order parts of \mathcal{P} by the time they are merged with something else.

Claim

Each $P \in \mathcal{P}$ has *unresolved* edges to most kt *later* parts in \mathcal{P} .



Say P is merged with P' at time i. Then $G(P \cup P')$ contains a clique $\{v_1,...,v_t\}$. Say $Q \in \mathcal{P}$ disappears after time i, and $xy \in E_U$ is an edge between P and Q.

Then $v_i y$ must be a non-edge for some i (otherwise $\omega(G) > t$)

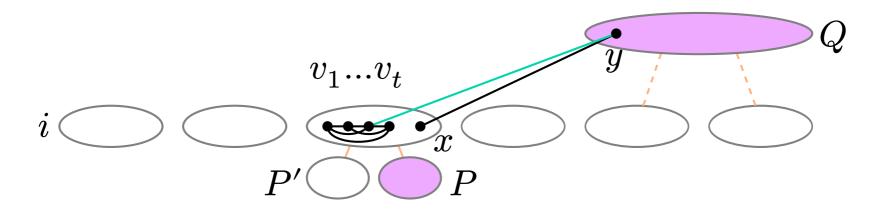
Since xy is in E_U , it is unresolved at time i. So v_iy must be resolved at time i.

$$k := \operatorname{mw}_2(G), t := \omega(G)$$

Order parts of \mathcal{P} by the time they are merged with something else.

Claim

Each $P \in \mathcal{P}$ has *unresolved* edges to most kt *later* parts in \mathcal{P} .



Say P is merged with P' at time i. Then $G(P \cup P')$ contains a clique $\{v_1,...,v_t\}$. Say $Q \in \mathcal{P}$ disappears after time i, and $xy \in E_U$ is an edge between P and Q.

Then $v_i y$ must be a non-edge for some i (otherwise $\omega(G) > t$)

Since xy is in E_U , it is unresolved at time i. So v_iy must be resolved at time i.

This leaves only kt choices for Q (k choices for each v_i).

Reminder:

- We removed edges inside each $P \in \mathcal{P}$, so \mathcal{P} is a partition into independent sets.
- Each edge $xy \in E_R$ is created by resolving between parts X,Y in or before \mathcal{P} . In particular, X,Y are independent sets in E_R .

Reminder:

- We removed edges inside each $P \in \mathcal{P}$, so \mathcal{P} is a partition into independent sets.
- Each edge $xy \in E_R$ is created by resolving between parts X,Y in or before \mathcal{P} . In particular, X,Y are independent sets in E_R .

Thus for $G_R := (V, E_R)$, we have a merge sequence satisfying the following:

(*) Parts X, Y can only be positively resolved if X, Y are independent sets in G_R .

Lemma

If G_R has a construction sequence satisfying (*), and with radius-2 width k, then $\chi(G_R) \leq k$.

Resolving only independent sets

(*) Parts X, Y can only be positively resolved if X, Y are independent sets in G_R .

Lemma

If G_R has a construction sequence satisfying (*), and with radius-2 width k, then $\chi(G_R) \leq k$.

Sketch:

We make a partition from the merge sequence once again! $\mathcal{P} := \text{maximal parts that are positively resolved with something.}$

Resolving only independent sets

(*) Parts X, Y can only be positively resolved if X, Y are independent sets in G_R .

Lemma

If G_R has a construction sequence satisfying (*), and with radius-2 width k, then $\chi(G_R) \leq k$.

Sketch:

We make a partition from the merge sequence once again! $\mathcal{P} := \text{maximal parts that are positively resolved with something.}$

For any $P \in \mathcal{P}$:

- (1) P is an independent set by (*).
- (2) P has radius 1 in the graph of resolved edges,
- (3) and (2) implies that G_R/\mathcal{P} is k-degenerate.

Product colouring

Summary:

We have three kinds of edges associated with \mathcal{P} :

- edges inside a part $P \in \mathcal{P}$
- E_R : edges created by resolving between parts in or before \mathcal{P} ("resolved in \mathcal{P} ")
- E_U : edges created by resolving with a part after \mathcal{P} ("unresolved in \mathcal{P} ")

We colour each of the 3 edge set separately, and combine with a product colouring:

- edges inside parts of \mathcal{P} : induction on ω
- E_U : degeneracy argument, uses that parts $P \in \mathcal{P}$ are maximal without K_t
- E_R : have a construction sequence where we only resolve between independent sets. Uses a second freezing + degeneracy argument.

Open questions

- Is bounded $\operatorname{mw}_1(G)$ enough for χ -boundedness?
- Polynomial χ -boundedness?
- Extend to bounded flip-width, linear neighbourhood complexity,...

Open questions

- Is bounded $\operatorname{mw}_1(G)$ enough for χ -boundedness?
- Polynomial χ -boundedness?
- Extend to bounded flip-width, linear neighbourhood complexity,...
- Take \mathcal{C} a class with unbounded merge-width / with weakly sparse graphs of unbounded minimum degree. Does \mathcal{C} transduce a non χ -bounded graph class?

Open questions

- Is bounded $\operatorname{mw}_1(G)$ enough for χ -boundedness?
- Polynomial χ -boundedness?
- Extend to bounded flip-width, linear neighbourhood complexity,...
- Take \mathcal{C} a class with unbounded merge-width / with weakly sparse graphs of unbounded minimum degree. Does \mathcal{C} transduce a non χ -bounded graph class?

Thank you!